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Abstract

In air traffic management, a pairwise conflict is a predicted loss of separation between
two aircraft, referred to as the ownship and the intruder. A conflict prevention bands
system computes ranges of maneuvers for the ownship that characterize regions in
the airspace that are either conflict-free or "don't go" zones that the ownwhip has
to avoid. Conflict prevention bands are surprisingly difficult to define and analyze.
Errors in the calculation of prevention bands may result in incorrect separation
assurance information being displayed to pilots or air traffic controllers. This paper
presents provably correct 3-dimensional prevention bands algorithms for ranges of
track angle, ground speed, and vertical speed maneuvers. The algorithms have been
mechanically verified in the Prototype Verification System (PVS). The verification
presented in this paper extends in a non-trivial way that of previously published
2-dimensional algorithms.
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Figure 1. A graphical display of prevention bands algorithms for track angle, ground
speed, and vertical speed

I Introduction

In air traffic management, a (pairwise) conflict is a predicted loss of separation
between two aircraft within a lookahead time. One of the aircraft is called the
ownship and the other aircraft, which represents an arbitrary traffic aircraft, is
called the intruder.

A conflict prevention system consists of algorithms that sense traffic aircraft and
characterize ranges of maneuvers for the ownship that are either conflict-free or that
lead to conflict. The maneuvers are typically constrained to those where only one
parameter of the ownship's velocity is varied at a time: track angle, vertical speed,
or ground speed.

More precisely, a (pairwise) prevention bands algorithm, for a given parameter
such as track angle, ground speed, or vertical speed, has as input the state infor-
mation of the ownship and intruder aircraft, i.e., their 3-dimensional position and
velocity vectors. It returns a list of regions, called bands, consisting of values for
the specified parameter. There is a natural way to associate a color, either red or
green, to each band. Red bands specify "don't go" zones, i.e., parameter values that
the ownship has to avoid because they lead to conflict. Conversely, the green bands
specify parameter values for the ownship that yield conflict-free maneuvers.

Figure 1 illustrates in a graphical display prevention bands for the ownship for
track angle, ground speed, and vertical speed maneuvers. Given the current position
and velocity vectors of the aircraft, the displayed bands in Figure 1 indicate that the
aircraft will be in conflict if, for instance, the ownship maneuvers to a track angle of
45°, to a ground speed of 300 knots, or to a vertical speed of 0 feet per min. On the
other hand, if the ownship maneuvers to any value in the green regions the aircraft
will be conflict-free.

A pairwise prevention bands algorithm is correct if every possible value for the
chosen parameter is either contained in a band or is a boundary point of one of the
bands, and if the colors of the bands characterize conflict as follows. For all bands B
and parameter values x c B, the ownship's maneuver corresponding to the value x
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is in conflict with the traffic aircraft if and only if the color of B is red. Equivalently,
the ownship's maneuver corresponding to x is not in conflict if and only if the color
of B is green.

Conflict prevention bands are surprisingly difficult to define and analyze [1].
The formal verification of a prevention bands algorithm for horizontal conflicts was
described in [2]. Three-dimensional prevention bands algorithms were presented,
without correctness proofs, in [3]. The 3-dimensional algorithms presented in that
paper compute incorrect bands for some special cases. This paper presents correct

versions of the prevention bands algorithms originally proposed in [3]. The correct-
ness properties of these new algorithms have been formally verified in the Prototype
Verification Systems (PVS) [4].

This paper focuses on pairwise algorithms, i.e., it considers only one traffic air-
craft: the intruder. Prevention bands algorithms for an arbitrary number of traffic:
aircraft can be obtained from a, pairwise algorithm by simply letting the red region
for n-aircraft be the union of the red regions computed for the ownship and each
individual traffic aircraft. The green regions can be computed as the complement of
the red ones. The correctness of the algorithms for n-aircraft can be easily derived
from the correctness of the pairwise prevention bands algorithms.

Notation

The mathematical development presented in this paper has been fully formalized
in PVS.' However, for readability, this paper uses standard mathematical notation
instead of PVS syntax.

Vector variables are written in boldface letters and can denoted by their compo-
nents. For example, if w E R 3 and u E 1(82 then w = (wx , wy , wz ) and u = (u, uy).
The notation w(x,y) denotes the projection of w in the horizontal plane, i.e.,2

w( x ,y ) — (wx, WY),

and the notation u with [z — r] denotes the 3-dimensional vector whose projection
to R2 is u and whose z-coefficient is r E 118, i.e.,

u with [z ^ r] - (ux , uy , r).

As usual, the notation JwJJ refers to the norm of the vector w and the notation
W • w / refers to the dot product of the vectors w and w'. The expression 0 represents
the zero vector, e.g., the vector whose components are 0.

If u E 1182 , then u1 denotes the (right) perpendicular vector:
1u - (uy, —ux).

From this definition, it can be easily proven that u • u1 = 0. Furthermore, if u is
nonzero, then the vector w E 1182 can be written as a linear combination of u and
u1 in the following way:

W=
^Ju112 ((

u - w) u + (u^ ' W) u^).	 (1)

'Electronically avaialable from http://shemesh.larc.nasa.gov/people/cam/ACCoRD .
2The symbol - is used in this paper to introduce mathematical definitions.
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The function sign: R H {-1, 11 is defined such that sign(x) = 1 if x > 0 and
sign(x) = —1 otherwise. As usual in mathematics, t = ±1 denotes the fact that
an integer t belongs to the set {-1,1}. Moreover, denote logical
negation, implication, and equivalence, respectively.

Finally, by convention, names of predicates and functions used in the specifica-
tion of the problem are written in italics. Functions that represent algorithms to be
implemented in a programming language are written in typewriter font.

2 Statement of the Problem

The prevention bands algorithms discussed here only use state-based information
for the two aircraft, i.e., constant position and velocity vectors that are elements of
the 3-dimensional Euclidean space 1[8 3 . Aircraft dynamics are represented by a point
moving at constant linear speed. These approximations of real aircraft behavior are
valid for short lookahead times (typically less than 5 minutes). The current state of
the ownship and traffic aircraft are denoted by the following vectors.

S, E R3 Initial position of the ownship aircraft
vo E 1[8 3 Initial velocity of the ownship aircraft
si E IU Initial position of the traffic aircraft
vi c 1[8' Initial velocity of the traffic aircraft

In the airspace system, the separation criterion for two aircraft is specified as a
minimum horizontal separation D and a minimum vertical separation H. A conflict
between the ownship and the intruder occurs when there is a time in the future,
within a lookahead time T, such that the horizontal distance between the aircraft
is less than D, and the vertical distance is less than H. Typically, D is 5 nautical
miles, H is 1000 feet, and T is 5 minutes.

For the remainder of the paper, it is assumed that the ground speeds of the
ownship and intruder aircraft are not zero i.e. both IIvo(x,y) II	 0 and ll vi(x,y) 1154 0
hold, and that the aircraft are not in loss of separation, i.e., either Il so(x,y) —si(x,y) ^^ >
D or Is,, — six I > H hold. Therefore,

vo(x ,y ) :^ 0.

vi (x ,y ) 7^ 0'
so—si:^0.

As noted in the introduction, the possible maneuvers considered for the ownship
are constrained to those where only one parameter of the ownship's velocity vector
is varied, e.g., track angle, ground speed, or vertical speed.

2.1 Conflicts

The ownship and the intruder aircraft are in conflict if there exists t E [0, T] such
that, at time t, vertical separation is lost, he,

(( SO + tVo)- (si +tvi))zI <H,
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and horizontal separation is lost, i.e.,

( So + t vo) (x ,y ) — ( Si + t vi ) (x ,y ) II < D.

Since (so+t vo)—(si +t vi) _ (so—si )+t (v,—vi ), the predicate that characterizes
conflict can be defined on s = so — s i and v = vo — vi , the relative position and
velocity vector, respectively, of the ownship with respect to the intruder.

That is, conflict can be viewed as a predicate of two vectors s and v rather than
a predicate of four vectors so , vo , si , and vi , a result that greatly simplifies the
notation. Thus, the predicate conflict? can be formally defined as follows.

conflict ?(s, v) - Elt c [0, T] : ( s + t v) z I < H and

II s (_,y ) + t v(x,y ) II < D.	 (2)

For the remainder of this paper, the relative position and velocity vectors, s and v,
will be used in place of s o — si and vo — vi , respectively.

The separation criterion can be understood as an imaginary cylinder of height H
and diameter D around each aircraft and a conflict between two aircraft as a future
overlapping of these cylinders. In this paper, an alternative but equivalent view is
considered where the intruder is surrounded by a cylinder, called protected zone, of
half-height H and radius D. Flom this perspective, a conflict between these two
aircraft is equivalent to the existence of a time t c [0, T] at which the ownship is in
the interior of the intruder's protected zone.

2.2 'Lack Angle, Ground Speed, and Vertical Speed Maneuvers
A maneuver for the ownship is a new velocity vector vo that is implemented by the
aircraft in zero time. Track angle, ground speed, and vertical speed maneuvers are
formally defined as follows.

• A track angle maneuver for the ownship is a velocity vector v'o such that

Il vo(x,y) II = Ilvo(x,y) II and vOZ = vOZ . In this case, there exists a function
track: R3 

1--4 R that computes a real number a = track(vo), called the track
angle of vo, such that

vo (x ,y ) = (Il vo(x,y) II sin a, lvo (x ,y ) II cos ce).

The function track is easily defined using the are tangent function and the
signs of vox and vay.

• A ground speed maneuver for the ownship is a velocity vector v'o such that
vo (x,y) and vo(x,y) are parallel (have the same track angle) and vOZ = vOZ . In
this case, there exists a real number p with the property that

=(	 p	
vox,	

p	 vo y voz)
V° 	 II vo (x,y ) II	

Il v
o(x,y) II 

The number p is the ground speed of vo , i.e., Iv' (x,y) I I = p -

4



. A vertical speed maneuver for the ownship is a velocity vector vo such that
vo (x,y) = vo(x,y) , i.e., the horizontal velocity vectors are equal. In this case,
there exists a real number r, called the vertical speed of vo such that

V o = (vox, voy, r).

The functions vtrk, vg, vv5 : R H 1[8'3 , implicitly parametrized by v o , are defined
as follows.

vtrk(a) _ ( II vo (x,y ) II sin a, II vo (x ,y ) II cos cY, voz),	 (3)

7""; 	 _ (	
p	

Vox>	
p	 V V")^	 (4)g	

°^Il vo(x,y ) II	 II VO (x,y) II 

1/vs(r) _ (Vox>V'Y'r),	 (5)

These functions assign to each track angle a c R, ground speed p c 118, and ver-
tical speed r c 1[8, respectively, the corresponding velocity vector for the ownship.
Important properties of the functions vtrk, vgs , and vvs are:

l'trk(a)(x,y) II = Jwo (x , y) 
jj ,	 (6)

Il vgs(p) (x,y ) II = P,	 (7)
vvs (r)z = r.	 (8)

The constructions in this paper will restrict ground speed maneuvers to those
where the ground speed p is positive.

2.3 Conflict Detection Algorithm

A conflict detection algorithm cd is a function that takes as parameters the relative
position of the aircraft s and the velocity vectors v o , vi , and returns a Boolean
value, i.e., True or False.

Definition 1. The algorithm cd is correct if it holds that

conflict?(s, vo — vi) ==> cd(s, vo, vi).

It is cd is complete if it holds that

cd(s, Vo , Vi ) ==:^> conflict?(s, vo — vi).

In other words, a conflict detection algorithm is correct if it does not have missed
alerts, i.e., it detects all conflicts, and it is complete if it does not have false alerts,
i.e., it only detects actual conflicts. Note that a conflict detection algorithm cdT
that always returns True is correct and an algorithm cdF that always returns False
is complete. However, cdT is not complete and cdF is not correct. An example of a
correct and complete conflict detection algorithm is cd3d (see Appendix in [3]).
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2.4 Prevention Bands Algorithms

Given a, function v: 1[8 ^ R3 and a closed interval I = [I1 , I2 ], a, prevention bands
algorithm for v over I is a function with parameters s, v o , and vi that returns a
finite, ordered sequence Lv of elements of I, such that 11 E Lv and 12 E Lv. Each
consecutive pair A and B of entries in Lv determines an open interval (A, B), which
is called a band (for the parameter represented by v).

By abuse of notation, the syntax (A, B) C Lv will denote that (A, B) is a band
in L v , i.e., A and B are consecutive entries in Lv.

Definition 2. Given a function v: R H 1[83 and a closed interval I C 118, a preven-
tion bands algorithm for v over I is correct if for any band (A, B) in Lv and real
numbers x, y C (A, B), it holds that

	

conflict?(s, v(x) — v i )	 conflict?(s, v(y) — vi).

The definition above states that all the points in a band computed by a correct
prevention bands algorithm have the same conflict property, e.g., either all the points
yield conflict-free maneuvers or all the points yield maneuvers that lead to conflict.
Typically, v will be one of the functions vtrk, vgs, or vvs defined in formulas (3), (4)
and (5). The boundaries 11 and 12 , of the interval I, are minimum and maximum
values for the argument of v. For v = r,/t,k, the standard values are 11 = 0 and
12 = 27. For v = Tlgs and v = vas , 11 and 12 are typically the minimum and
maximum ground or vertical speeds for the ownship, respectively.

To each band (A, B) in L v , a color is associated as follows:

colors, vi , A, B)

if cd(s, v( A 
2
B ), vi) then

	

Red	 (0)
else

Green

endif

where cd is any correct conflict detection algorithm, such as cd3d.
The following theorem can be easily proven from Definition 2.

Theorem 1. Given a function v: R ^ 1[83 and a closed interval  C 1[8, a prevention
bands algorithm for- v is correct if and only if for any band (A, B) in L,,,

co Zor(s, vi , A, B) = Red	 V y C (A, B) : conflict?(s, v(y) — vi ), and (10)

co Zor(s, vi , A, B) = Green t	 Vy C (A, B) : conflict?(s, v(y) — vi).	 (11)

The relation between a graphical display such as in Figure 1 and the output
of a prevention bands algorithm can be illustrated by considering the track angle
display, that is, where v = r"t.rk and I = [0, 2T] . A prevention bands algorithm for
track angle will return a, finite, ordered sequence Lvt,k of track angles in the interval
[0, 27r]. This sequence will contain both of the angles 0 and 27r. If the algorithm is
correct, then each consecutive pair, a and .3, of track angles in this sequence defines
a band i.e., an open interval (ce, /3), with the property that either
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Figure 2. Relation between track angle prevention bands algorithm and graphical
display

1. all track angles between ce and ,3 result in conflict, or

2. all track angles between ce and Q do not result in conflict.

If the track angles between a and 3 all result in conflict, the region between a and ,Q
is colored red. Otherwise, this region is colored green. The color of each such region
is determined by conflict information at the midpoint '+3 .3  This is illustrated by
Figure 2.

2.5 Proving Correctness of a Prevention Bands Algorithm

This section provides a general strategy that can be followed to formally verify that
a given prevention bands algorithm is correct. Subsequent sections will describe
the use of this strategy in the formal verification of prevention bands algorithms for
track angle, ground speed, and vertical speed.

Recall that a prevention bands algorithm depends on a function v: R I R'3 , (e.g.
11 = T/t.rk), and a closed interval I = [h, I2]. Thus, a real-valued argument x of the
function v is understood as a parameter of the ownship's velocity vector, and the
value v(x) is the corresponding velocity vector for that parameter. The following
theorem can be used to verify the correctness of a prevention bands algorithm for v
over I.

Theorem 2. Let L v be a finite sequence computed by a prevention bands algorithm
for v over an interval I and let Q,: R H R be a continuous function, implicitly
parametrized by s and v27 such that

1. Q, characterizes conflict? in the following way:

Q,(x) < 1 ^ conflict?(s, v(x) — v2 ), and	 (12)
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2. L, is Q,-complete: For all real value x E I,

52,(x) = 1 ==^ x E L,, 	 (13)

then the algorithm that computes L, is correct.

Proof. By Theorem 1, it suffices to prove that Formulas (10) and (11) hold. Let
(A, B) be a band in L,.

• Suppose that color(s, vi, A, B) = Red and let y be a real number in the open
interval (A, B). Suppose, by reduction to absurdity, that conflict?(s, v(y) —
vi). By Hypothesis 1, 52,(y) > 1. However, by Hypothesis 2, since (A, B) E L,

and y is equal to neither A nor B, it follows that S2, (y) > 1. By the definition
of the function color given in Equation (9), it holds that conflict?(s, 71(x) —vi),

where x = A2B. Again by Hypothesis 1, 52,(x) < 1. Since S2, is continuous,
the intermediate value theorem implies that there exists some z between x and
y such that 52,(z) = 1. Since z is therefore in the interval (A, B), A and B are
consecutive in L,, and the algorithm computes all points where S2, realizes a
value of 1, this is a contradiction.

• Similar reasoning can be used to show that if color(s, vi , A, B) = Green, then
any y in (A, B) satisfies conflict?(s, v(y) — vi).

3 The Function Q

Using Theorem 2 to verify that a prevention bands algorithm is correct for track
angle, ground speed, or vertical speed maneuvers, i.e., for the functions vtrk, vgs,
and vv , will require finding three separate instantiations of the function S2, that
satisfies all the hypotheses of the theorem. This section proposes the definition of a
function 52 that can be used to define S2, for any 7.1:  118 H 1183 , where some of these
hypotheses can be discharged once and for all.

Let 52: 1183 H 1183 be a continuous function, implicitly parametrized by s (_
so — s i ), that characterizes conflict? in the following way:

Q(v) < 1	 conflict?(s, v).	 (14)

For any continuous function v, a, continuous function Q,: 118 F-^ 118 that satisfies
Equation (12) can be defined as follows:

52,(x) - Q(v(x) — vi ).	 (15)

Therefore, since functions vtrk, vgS , and vv, are continuous, Formula (15) can be used
to construct continuous functions ,L,trk I Qvgs, and 52,,,5 that satisfy Equation (12) in
Theorem 2.

Given such a function 52, the verification of correctness of a track angle, ground
speed, and vertical speed prevention bands algorithms over an interval I can be
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reduced to proving that L v , i.e., the sequence returned by each algorithm, is Q,-
complete, i.e., it contains all x c I where the function St y, attains a value of 1. Since
each of the algorithms will compute a sequence of values in a distinct way, a special
proof of Q,-completeness will be required for each algorithm that computes L v . The
function Q will be of use in this step as well. Indeed, the function Q will be defined
such that vectors v where Q(v) = 1 have particular forms. The proof that Lv is
Q,-complete, for v c { vtrk, vgs> vVS}, will be done by proving that x c Lv if and only
if the vector v(x) has one of these forms.

The rest of this section concerns the definition of such a function Q.

3.1 Cylindrical Distance

Recall from Section 2.1 that the protected zone is a cylinder around the intruder
aircraft that has half-height H and radius D. In order to define the function Q that
satisfies Equation (14), a notion of cylindrical distance is needed.

Definition 3. The cylindrical length of a vector w E 1[83 is the quantity

w ll ,yl = max( 11W(->y)11 - I )

Definition 4. The cylindrical distance between two vectors, w1 and W2 , is the
quantity IIw1 — W2   c,1

Cylindrical distance is a metric on 1[8 3 , in the sense of real analysis [5], and R is a
metric space with this metric. In particular, this means that the triangle inequality
holds for any WD, W1, W2 c R3:

IIWD — W2IIcy1 < II WO — W 1 11 cyl + II W1 — W2IIcy1 . 	(16)

The key property of cylindrical distance, as it relates to loss of separation of aircraft,
is stated in the following theorem.

Theorem 3. Two aircraft are in loss of separation if and only if IsII,yl < 1, where,
as in Section 1, s = so — s i is the relative position vector of the aircraft.

3.2 The Definition of Q

By Theorem 3, the ownship and the intruder aircraft are in conflict if and only
if there exists some t c [0, T] such that I

t
s + t v I yl < 1. Thus, for s such that

I s llcyl ^ 1, i.e., for s not on the boundary of the protected zone, the function Q(v)
is defined as

Q(v)-- min ll s + t vll,yl .	 (17)
tc [D,T]

Two important remarks on the definition of the function Q given by Formula, (17)
are in order. First, the function Q is well-defined since the quantity I t s + t v 

l l cyl

actually attains a minimum as t ranges over the interval [0, T]. That is, there exists
some T c [0, T] such that I t s+ T v I I,yl < I I s+t v I I cyl for all t c [0, T]. Indeed, when the
vectors s and v are fixed, the function d,yl : [0, T] H R defined by d,yl (t) = I

t
s+t v  yl

9



Figure 3. Infinite many places where minte[O,T] It s + t v ll,yl = 1

is continuous, and every continuous function on a closed interval attains a minimum
on that interval. The function dCyl is continuous because it is the maximum of two
functions, dh ,,i,z and d„ert, defined by

) ( >y)
dhoriz (t) -  s	 v+ t x

D

dveTt(t) = 
1(s+tv)zI

H

both of which are continuous.
Second, Formula (17) does not define Q when s yt = 1. If s  cyl = 1, in which

case s is on the boundary of the cylinder, then any v which points outward from
the cylinder will satisfy mintc[O,T] It s + t vll cyl = 1. This is because the minimum
is attained at t = 0 for any such v. This is illustrated in Figure 3 in the case
where 1 s(x,y) I 1 = D and I sz I < H. Therefore, if I s 11 cyl = 1, there is an infinite
number of vectors v such that minte[0,T] It s + t vII cyl = 1. Defining Q in this case
using Formula (17) would make the proof that Lv is Q,-complete impossible, as by
definition of a prevention bands algorithm the sequence Lv is finite.

While this shows that some care is needed when defining Q on the boundary of
the cylinder, it is possible to define Q so that

1. it satisfies Equation (12),

2. it is continuous, and

3. it is suitable for showing that a sequence L, is Q,-complete.

s (x ,y ) ' v(x , y )	 if 1 s (x , y)11 = D and Iszl < H

Q(V) = szvz 	 it II s (x,y) II < D and Isz l = H	
(1g)

max(s(x,y) ' v(x,y), szvz ) if l s ( x.y ) 11 = D and szl = H

mintE[0,T] Its +tvll,yl	otherwise, i.e., if 1 s llcyl :^ 1

The following theorem is a basic exercise in vector algebra.

Theorem 4. conflict?(s, v)	 Q(v) < 1.

10



The formal proof that Q is continuous requires more work and it is explained in
the rest of this section. Section 4 provides a classification theorem for Q, which is
used then used in sections 5-7 to show that the sequences L,, for v E { vtrk, vgs, vvs},
computed by the proposed prevention bands algorithms, are Q,-complete.

3.3 Continuity of n

Since the if-statements in the definition of Q do not depend on v, Q is continuous
if and only if each of the quantities s (x,y) • v(xM, szvz 7 max(s(x,y) - v (x,y) , szvz), and
minte[o,T] It s+ t v I I cyl are continuous functions of v. Only one of these four statements
is nontrivial, that the minimum niintc[o,T] It s + t vIl,yl is continuous in v. This can
be proved with standard techniques from real analysis [5]. In fact, it follows from a
generalization of the Heine-Cantor theorem, which says that a continuous function
on a closed interval is uniformly continuous. In particular, the following theorem
has been proved.

Theorem 5. If A and B are real numbers with A < B and f : [A, B] x R' ^-4 1[8
is continuous, then the function g: R' 1--* R defined by g(v) - mintc[A,B] f (t, v) is
continuous.

The formal proof of this theorem required the development of a vector analysis
library in PVS, which is now part of the PVS NASA Libraries.3

The continuity of Q is a direct consequence of Theorem 5, when A = 0, B T,
and f(t,v) _ GIs+tvII,yl.

Theorem G. The function Q is continuous.

The purpose for constructing the function Q was to provide a definition for
Q,: R F--* R for every function v: 118 H R 3 . The following corollaries follow directly
from theorems 4 and 6.

Corollary 7. For any v: R i 1183 , the function Q,, defined in Equation (15),
satisfies Q,(x) < 1 if and only if conflict?(s, v(x) — vi).

Corollary 8. If v: 118 H R3 is continuous, then the function Q, is continuous.

Since functions vtrk, vg,, and vvs are continuous, corollaries 7 and 8 hold for

LVtrk' Q 'gs , and S2v„S.

4 Classification of Critical Vectors

To verify the correctness of a prevention bands algorithm for v over a closed inter-
val I, it must be shown that the computed sequence Lv is finite and includes all
points x E I such that Q(v(x) — v i ) = 1. Vectors v that satisfy Q(v) = 1 are called
critical vectors. This section shows that critical vectors can be analytically classified
in a. finite way.

3The PVS NASA Libraries are available from http: // shemesh.larc . nasa.gov/fm/ftp/larc/
PVS-library/pvslib.html.
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T	 T,	 ,-^' vZ>0

'_Vz<0

2H

------- ------------- -------------- - -------{-
D

Figure 4. Case vz :?^ 0, 0 < T < T, I sz + T vz I = H, and II (s + T v)(x,y) II < D

Figure 5. Case T =T, I sz + T V, I =H, and I I (s + T v) (x,y) I I < D

Consider a relative position vector s that satisfies II s II,yl ^ 1 and a critical vector
v. Since Q(v) = 1, it holds that mintc[o,T] Its+t vII,,yl = 1. This minimum is attained
at a real number T E [0, T]. Since IIsII,yl 54 1, it follows that T :^ 0. Thus, either
T =Tor 0 < T <T. If it holds that vz :^ 0, 0 <T <T, I sz + T vz I = H, and

II(s + TV) y) II < D, then it can be shown that mintc[0,T] Its + t VII cyl < 1. That

is, there is a time near T where the aircraft will be in loss of separation. This is
illustrated in Figure 4.

If the same conditions hold, but with vz = 0, then T is not unique, and it can
also be shown that a particular T can be chosen so that 0 < T < T, I sz + T vz I = H,
and II(s + T v) (x,y) I I = D.

Since, 1 = Q(v) =Its + T vII cyl = max( 11(s
+T D)(")11 Isz 

H"z1 ), this leaves the
following cases.

1. Case T = T, I sz + T vz I =H, and I I (s + T v) (x,y) I I < D.

2. Case T = T, I sz + T vz I < H, and II (s + T v)(x,y) II = D.

3. Case Isz + TV, I= H and II (s + T v)(x,y ) II = D.

4. Case 0 < T <T, Isz + T vz I <H, and I I (s + T v) (,, ,y) I I =D.

These four cases are illustrated in figures 5, 6, 7, and 8, respectively.
These cases will be formalized using four predicates: vertical case? (Section 4.1),

circle-case-2D? (Section 4.2), circle-case-3D? (Section 4.3), and line case? (Sec-
tion 4.4). It will be shown in Section 4.5 that these four predicates are sufficient to
classify solutions to the equation Q(v) = 1, even in the case where II s II,yl = 1.
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41,,
S	 ,V

s.
r'

2H

T

Figure 6. Case T = T, Is, + T v,l < H, and II(s + T v) (x,y) Il = D

T

D

Figure 7. Case I s,z + T V,z I = H, and 11 (s + T v) (. ,y) 11 = D

T

v,
sr".

Figure 8. Case 0 <T < T, sz + T vz l < H, and (s + T v) (x y) l l =D
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4.1 Vertical Case

Consider the case 1 where T = T, I s, +T vz I = H, and11 (s + T v) (,,y) < D, which is
illustrated by Figure 5. In this case, if (sz + T v,z ) vz > 0, it can be formally proven
that there is some t C (0, T) such that I I s + t v I I cyl < 1, which is a contradiction.
This motivates the definition of the following predicate on sz, vz j a real number t,
and an integer t = +1.

vertical case?(sz 7 vz 7 t, t) - I sz + t vz I = H and

	

t (sz + t Vz) Vz > 0.	
(19)

Intuitively, the number t can be thought of as direction, with t = —1 corresponding
to entry into the protected zone at time t, and t = 1 corresponding to exit.

Case 1 corresponds to vertical-case ?(s,, v,, T, —1). The condition

(s + T v) (x,y) I l <D

is explicitly not included in this predicate, because the more general form is useful
when classifying other types of critical vectors. It is important to note that if

I sz + T vz I = H, then vertical case?(sz, vz 7 T, t) holds for some t = fl.
Vectors v that satisfy the predicate vertical case? are called vertical solutions.

4.2 Circle Case 2D

Consider the case 2 where T = T, I sz +T vz I < H, and I I (s + T v) y(x ) = D, which is
illustrated by Figure 6. If (s (x,y) +T v (x,y) ) , v(x.y) > 0, then it can be formally proven
that there is some t C (0, T) such that I I s + t v I I cyl < 1, which is a contradiction.
This motivates the definition of the following predicate on s, v, a real number t,
and s=fl.

circle_case_2D?(s, v, t, t)	 (s + t v) (x,y) 11 = D and	
(20)

t (S ( x ,y ) + t V (x,y)) V (x ,y ) > 0.

Case 2 corresponds to circle_case2D?(s, v, T, —1). The condition

sz + T vz j < H

is not included in this predicate, because it will be used, along with vertical case?,
to classify other types of critical vectors. As for the predicate vertical case? above,
an important property of circle_case2D? is that (s + t v) ^^ = D implies that
circle_case2D?(s, v, t, t) holds for some t = +1.

Vectors v that satisfy the predicate circle_case2D? are called 2D circle solutions.

4.3 Circle Case 3D

Consider the case 3 where I S Z + T V, = H and I I (s + T v) (x y) I I = D, which is illus-
trated by Figure 7. It follows from the definitions of vertical case? and circle-case-2D?
that there exists Q, t2 i each equal to —1 or 1, such that vertical-case ?(s,, v,, 7, Q) and
circle_case2D?(s, v, T, t2). If T is positive and t l = 12, it can be proven that either

14



Figure 9. Line case: v is tangent to the circle

vertical case ?(sz j vz,T, —1) or Q(v) < 1. In classifying the solutions to the equation
Q(v) = 1, the case where vertical-case ?(sz, vz 7 T, —1) is true is handled separately.
Since it holds that Q(v) = 1, a requirement for the case where I sz + T vz 

I 
= H and

II (S + T v )(x,y) II = D is therefore that tl = — Q. This motivates the definition of the
following predicate. Similar to the predicate circle-case-2D?, this predicate depends
on s, v, t = ±1, and a real number t.

circle_case_3D ?(s, v, t, t) - t > 0 and

circle_case2D?(s, v, t, c) and	 (21)

vertical-case ?(s,, vz 7 t, —c).

Vectors v that satisfy the predicate circle-case-3D? are called 3D circle solutions.

4.4 Line Case

Consider the case 4 where 0 < T < T, Isz + T vzI < H, and II (S + T v)(x,y) II = D,
which is illustrated by Figure 8. As Figure 9 indicates, the fact that T satisfies
minte[o,T] I I S + t v cyl = Its + T V  ^yj can be used to show that the trajectory from
s(x,y) along v (x y) is tangent to the circle of radius D around the origin. In this
figure, the vector vL is the vector (vy , — vx, vz).

It is immediately clear from Figure 9 that the angle a can be no greater than
7r/2. Since s(x,y) • —v(x,y) = II s(x,y) II II v (x,y) II cos a> 0, it follows that s (x,y) • v(x,y) < 0.

In addition, COS O = 
S(Dv) . 

Thus,

S (x,y) , vL (x >y ) — II S ( x , y ) II II v (x,y) II COs	 (22)

= DIIv(x,y)11.

This construction depends on a vector v(x,y) that is tangent to the right side
of the circle. The analogous construction for a vector v(x,y) that is tangent to the
left side of the circle would use —v L in the place of the vector vL . This motivates
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the definition of the following predicate, which depends on s, v, and a parameter e,
which is equal to either —1 for a right-tangent, or 1 for a left-tangent.

line case?(s, v, e) - s (x,y) • v(x,y) < 0 and	
(23)

— S (S ( x ,y ) , V1 (x ,y ) ) = DIIV(x,y)II.

Vectors v that satisfy the predicate line case? are called line .solutions.

4.5 The Classification Theorem

Critical vectors can be classified according to the following theorem.

Theorem 9. If Q(v) = 1, then one of the following conditions holds.

1. II s(x,y) II > D and line-case ?(s, v, c) holds for some t = f1.

2. I sz + T vz I < H and circle_case_2D?(s, v, T, —1)

3. There exists a real number t > 0 such circle_case_3D?(s, v, t, t) holds for some
t=± 1.

4. IIs(x y) +T v(x y)II < D and vertical-case?(s zJ vz 7 T, —1)

This theorem can be used to show that a sequence L, computed by a prevention
bands algorithm is Q,-complete by proving that L, contains all the vectors that have
one of the four forms. It follows from this that L, contains all points x E I such
that 52,(x) = 1. When applying this technique to the case of track angle, ground
speed, and vertical speed bands, it is still possible to find a few special cases where
there are infinitely many points in I at which Q, attains a, value of 1. These cases
are handled separately by defining special versions of S2, that avoid this problem.

Section 4.6 defines functions OH and OD that compute the times where the air-
craft lose vertical separation and horizontal separation, respectively, and illustrates
the relation between these times and the four cases in the classification theorem
(Theorem 9). The functions O D and OH will be used to define prevention bands al-
gorithms for track angle, ground speed, and vertical speed maneuvers in sections 5, 6,
and 7, respectively.

4.6 Entry and Exit Times

In Figure 5, the time t at which the trajectory from s along v enters the protected
zone vertically, i.e., where (s+t v)z = ±H, is precisely T. In Figure 6, the trajectory
first touches the circle of radius D around the origin at time T. In Figure 7, the time
at which this trajectory enters the circle is precisely the time where its z-component
exits the interval [—H, H1. In Figure 8, the trajectory is tangent to the circle, so
the time where the trajectory first touches the circle is equal to the time where the
trajectory last touches the circle.

All this indicates that there are relationships between the predicates defined in
sections 4.1 to 4.4 and the following quantities:
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• the times where the z-component of the trajectory from s along V enters and
exits the interval [—H, H], and

• the times where the 2-dimensional trajectory from s(x,y) along v (x,y) enters
and exits the circle of radius D around the origin.

This section gives precise definitions of mathematical functions that compute these
times and gives a variant of Theorem 9 that uses them.

The times where the z-component of the trajectory from s along v enters and
exits the interval [—H, H] are real numbers t such that I sz + t Vz I = H. This
motivates the definition of the following function.

t sign(Vz) H — sz

Vz
OH(Sz,Vz, 0 _ , for vz :^ 0,	 (24)

where the number t is +1. It is easy to check that IS z + OH(sz, Vz, t) Vz I = H. In
addition,

OH(SzjVz,-1) < OH (Sz, Vz, 1 ) -	 (25)

Intuitively, the times OH(Sz , Vz , —1) and OH(sz , vz 7 1) are the times at which the
z-component of the trajectory from s along v enters and exits the interval [—H, H],
respectively. It can be proved from definitions that t (sz + OH (sz j Vz, t) vz) Vz > 0
for vz :7^ 0 and t = +1.

Lemma 10. If vz ^ 0, then I(s + t v)z I = H if and only if t = OH (sz , Vz , —1) or

t = OH( Sz, VZ, 1 ) -

Corollary 11. If vz =,4 0 and t = fl, then vertical-case ?(sz, vz , t, t) if and only if
t = OH (Sz , Vz I t).

Lemma 12. If vz =,4 0, then I(s + t v)z I < H if and only if OH (sz7 vz , —1) < t <
OH (Sz, Vz I 1).

A similar construction can be used to find the times at which the trajectory
from s(x ,y) along v (x,y) enters and exits the circle of radius D around the origin.
These times are real numbers t such that ( s + tV)(x,y)1 1 2 = D 2 . This is a quadratic
equation in t:

I V (x,y)11 2t2 + 2 (s(x,y) . v(x,y)) t + (II s (x,y) II 2 — D2) = 0.	 (26)

The roots of this quadratic equation are therefore given by the following function,
where t = ±1.

—S ( x ,y ) , V (x ,y ) + t ^(S (X 'V) , V ( x ,y )
)2 

— IV(X'Y)II2(JJS(X'Y) II I — D2)
()D (s, v, t) --(27)

I I V (x,y)112

For this function to return a real number, it is required that the 2-dimensional
vector v (x,y) be nonzero and that discriminant of the quadratic equation (26) is
nonnegative. That is, A(s, v) > 0, where

o(S V) = (S ( x.y) V(x y) ) 2 — II V (x,y ) 11 2 (II S ( x,y ) II 2 — D2).	 (28)
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The discriminant of the polynomial is given by 4A(s, v). If 0(s, v) > 0, then

2	 (s ( x ,y) V (x , y ) )2 — IV(x,y)II2(IIS(x,y)II2 — D2)
E) D (S, V, 

1) — e
D ( S , V, 

—1)	 v(x,y) 11 

Thus, O D (s, V, —1) _< O D (S, V,1), and these two numbers are equal if and only if
there is only one solution to the quadratic equation (26), which is equivalent to the
statement that the line with direction v that passes through s is tangent to the
circle of radius D around the origin. It has been formally proved that a (S(- ,Y) +
OD (s, V, c) V(x y))v(x y ) > 0 for 0(s, v) > 0, v(,,,,):,40, and c = f1.

Lemma 13. If v (x,y) zA 0, then 11 (s + t v)(x y)	 D if and only if A(s, v) > 0 and
t = OD (S, V, —1) or t = 19D (S, V,1).

Corollary 14. If 0(s, v) > 0 and v (x,y) =A 0, then circle_case_2D?(s, v, t, L) if and
only if t = O D (s, V, c).

Lemma 15. If v (x,y) 54 0, then 11 (s + t v)(x y) 11 < D if and only if A(s, v) > 0 and
OD (s, V, —1) < t < GD (s, v,1).

The next result follows directly from corollaries 11 and 14.

Corollary 16. If 0(s, v) > 0, v(x,y) :?^ 0, and vz zA 0, then circle_case_3D?(s, v, t, t)
if and only if t > 0 and the following string of equalities holds:

t = OD (S, V, t) = E)H(S , , Vz, —6).

Finally, the predicate defined in Section 4.4, line case?, can also be be written in
terms of the function O D . It is clear from definitions that O D (s, v, —1) = O D (s, v,1)
is equivalent to the statement that the 2 dimensional trajectory from s (x,y) along
V(x y ) is tangent to the circle of radius D around the origin. This statement is made
precise in the following corollary, which can be formally proven.

Corollary 17. If s(x,y) • V(x ,y) < 0 and v (x,y) 0 0, then line case?(s,v,-1) or
line-case ?(s, v, 1) holds if and only if 0(s, v) > 0 and OD (S, V, —1) = OD (s, v, 1).

It follows from algebraic manipulations that if ls(x,y)II > D and Q(v) = 1, then

S(-7y) 
V(x,y) < 0.

5 Track Angle Prevention Bands

This section presents a formally verified algorithm, namely track bands, for track
angle prevention bands over the closed interval [0, 27r], for the function vtrk : R H R
defined by Equation (3) in Section 2.2. Given vectors s, v o , and v27 this algorithm
computes track angle maneuvers, i.e., vectors vo that satisfy l vo(x,y) ll = vo (x,y) 11
and VOz = VOZ-

The definition of track bands depends on the algorithms track line, track-circle-2D,
and track-circle-3D, which compute track angle maneuvers that are line solutions,
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2D circle solutions, and 3D circle solutions, respectively. These three algorithms
are proved to be complete, i.e., they compute all vectors that satisfy their respec-
tive predicate, and correct, i.e., only vectors that satisfy their respective predicate
are computed. The correctness of track bands depends on the completeness of
track line, track-circle-3D, and track_circle2D.

5.1 A Special Version of , ,trk

For v = 7/trk, the function Q,, defined in Equation (15) of Section 3, characterizes
conflict in the sense of Corollary 7 (Section 3.3). In this section, v will refer ex-
clusively to the track angle function r/trk. To prove the correctness of a track angle
prevention bands algorithm, it must be shown that the finite sequence Lv returned
by the algorithm contains all track angles ce c [0, 27] such that Q, (a) = 1. An
obvious requirement is that there be only finitely many track angles in the interval
[0, 27r] for which this equation holds. As it turns out, there are several special cases
where this equation has infinitely many solutions for track angles a C [0, 2r]. Thus,
a variant of Q,, namely Q* must be defined for these special cases.

Suppose that s, vo, and vi satisfy s (x,y) = T vi(x,y), Il vo(x,y) 
IIZ = D2 , and

 + T vz I < H, where v = vo — v i . In this case,

s(x ,y)
 +T v(x,y) I 

I= I IT v i (x,y) +T (v°(x ,y) — vi ( x , y)) I I

= IT vo(x ,y) II	 (29)
= T I vo ( x ,y ) II

= D.

In addition, if a C [0, 27] is any track angle, then I I lArk (a) (x,y) I I = Ilvo(x y ) II, and
therefore this equality hold if vo is replaced with the vector 1/trk(a). It follows
immediately that for any a, A(s, vtrk(a ) — vi ) > 0. Lemma 13 in Section 4.6 implies
that T is equal to O D (s, vtrk(a) — vi , t) for some c = ±1. If ls (x,y) 11 > 1, there are
infinitely many track angles a such that T = O D (s, vtrk(a) — vi , —1), in which case
Lemma 15 in Section 4.6 implies that the minimum mintET II s + t ( vt.rk(a ) —vi) IIcyl is
attained at t = T. Thus, if IIs (x,y) I I > 1, then the function Q, (a) - Q ( vtrk(a) — vi)
intersects the line at 1 at infinitely many points between 0 and 27. This special case
is specified by the following predicate and illustrated in Figure 10.

tra,ck_spc?(s, vo, Vi, t ) = s (x ,y ) — tvi(x,y) and

D 2 	 (30)

v^(x ,y ) 2 = T2

An appropriate replacement Q* for Q, in this case would have to satisfy the
trk

following two properties.

Qt,.k (a) < 1	 Q, (a) < 1.

Qt ,rk (a) > 1	 Q, (a) > 1.

In addition, the function Q* should allow only finitely many solutions to the
trk

equation SZtrk (a) = 1 for a C [0, 2-;r]. If tra.ck_.spc?(s, vo, vi , T) holds as above, then
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Figure 10. A graph of Q,(a) = Q ( 7,'trk(a) — vi)

the track angles a such that T = OD (s, vtrk(a) — vi , —1) are precisely those angles
a such that Q, (a) > 1, and the angles a such that T = OD (s, vtrk(a ) — vi , 1) are
precisely those angles such that Q, (a) < 1. Thus, it is easy to see that Qt*rk(a) = 1
should imply that the following two equalities hold.

T = oD( S , Vtrk( a) - Vi, -1) = E) D(S i Vtrk(a) - Vi, 1).

By Corollary 14 and the definition of the predicate circle-case-2D?, it follows that

(S(x,y) +T(7 trk(a) - vi) ( x ,y ) ) - (7/trk(a) - Vi) ( x , y ) = 0.

Replacing s (x,y) with Tvi (x,y) and factoring out T, this is equivalent to the statement
that

0 = Vtrk(a)(x,y) - (vtrk(a) (

0) (x,y)= II 7'trk ( CO (x,y)II' - 7Arkla )(x,y) -VZ(x,y)

I I Vo ( x ,y) I I 2 - vtrk (a) (x,y) Vi (x,y)

D2
= T2 - 7/trk(a)(x,y) ' VZ(x,y)-

This motivates the following definition of the function S2* : R ^ R , which depends
on the explicit parameters vo, vi , t E R, and t = ±1.

D2
Qtrk(V,, Vi, t , O(a) = L ( Utrk (a)(x,y) ' Vi(x,y) - TZ) + 1. 	 (31)

Identical reasoning to that above can be used to prove that if track_spc?(s, Vo , vi , t)
holds and Qtrk(VO, Vi, t 7 t)(a) = 1, then the following equalities hold.

t = OD ( S , 7,trk(a) - Vi, -1 ) = oD(S , vtrk(a) - Vi, 1).

In particular, the following theorem can be formally proved using Corollary 17 in
Section 4.6.

Theorem 18. If track_spc?(s, vo , vi , t) holds and S2trk (vo vi t, a) (a) = 1 then
line-case ?(s, vtrk(a) — vi , s) holds for some s = ±1.
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When proving the correctness of the track angle prevention bands algorithm
presented in the next sections, the function Qtrk will be used in the place of Q, when
track_spc?(s, vo, vi , T) holds. Thus, it is necessary to prove that Stark characterizes
conflict in some special cases.

Theorem 19. If track_spc?(s, v o , vi , t), then the equivalence

Qtrklvo, vi, t, 0(a) < 1	 conflict?(s, v trk(a) — vi)

holds in each of the following three cases.

1. IIs (x,y) II > D, voz	 Viz, t = OH( Sz, Voz — Viz, t ), and 0 < t <T.

2. II s(x,y ) II > D, voz viz, t = 1 , t = eH ( Sz, Voz — vi, 1), and t = T.

3. t= 1, t = T, and I sz + T (voz — viz) I <H.

5.2 Line Solutions For Track Angle Maneuvers

The algorithm track line, defined in this section, takes as parameters s, v o , vi , t,
e = +1, and i = +1. It returns a vector vo c 1[83 that is either the zero vector or is
equal to vtrk(a) for some a c [0, 27) such that the relative velocity vector V = v'—vi
is tangent to the circle, i.e., it satisfies line-case ?(s, V, E). The main theorem in this
section states that track line is correct and complete for line solutions that are
track angle maneuvers.

The definition of track line requires the definition an auxiliary function, namely
tangent line, that takes as parameter a relative position vector s E R3 such that

II s (x,y) II > D and a number e = +1, and returns a vector in R3 that is tangent to
the protected zone.

tangent_line(s, e) -

if I s (x,y) II = D then
S s1

else
(32)

let d = I s(x,y) II 2 in

D 2 	eD d—D2 L(d —1)s+	
d	

s

endif

The proofs of the following lemmas rely on standard vector algebra.

Lemma 20. If I s (x,y) II > D and e = +1, then line case?(s, tangent_line(s, e), s)
holds.

Lemma 21. If II s (,;,y) II > D, then line case?(s, v, s) holds if and only if there exists
k > 0 such that

v(x,y) = k tangent- Iine(s,$)(xy).
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If vo c R3 is a track angle maneuver for the ownship such that line case?(s, vo —
Vi, s) holds, then it holds that

I Va(x,y)11 2 = Il k tangent_1ine(s,--)(x,y) +vz(.,y)112.	 (33)

Equation (33) has the form II Vo (x,y ) 11 2 = Il k u + vi(x,y) II2, where u E 1182 . Since it
will be necessary in later sections to solve similar equations of this form, a function
is needed that explicitly solves this equation for k c R.

It follows from the equation 11 vo(.,y)11 2 = Ilk u + vi(x,y) 112 that

o = (k u + Vi(x,y)) (k u + Vi (x,y ) ) — II Va(x,y) II 2 	(34)

— II U I1 2k2 + (2vi(x,y) • u ) k + (IIV,(x,y) 11  — IIV"(x,y)112)

This is a quadratic equation in k. If t = f1, then -b+` 2b-2 -4ac is a root of this
equation, where

a = IIuI12,
b = 2 vi (x ,y ) u	 (35)

= II Vi(x,y) 11 2 —11Vo(x,y)112.

Thus, if b 2 — 4ac > 0 and k = - b+` b2 -4"'is nonne ative then the un ique vector2a	 g	 q

vo such that v'	 ''Oz = vOZ and v (x,y) = k (x.y) + vi(x,y) satisfies both ll v'' (x,y) II
11 vo(,,,y) II and line-case?(s, v' — vi , s). This motivates the definition of the function
track-only-line, which returns a real number.

track_only_line(u, vo, vi, c)

let

a = IIuII2,
b = 2vi (x,y) . u>

I I Vi (x,y ) 11 2 — II Vo (x,y ) I12
in	

(36)
if b2 — 4ac > 0 then

—b + b2 — 4ac

2a

else

0

endif

The next lemma states that the algorithm track -only -line computes solutions
for k to the equation vo(x,y) = k u + vi(x,y) , where ll vo(x,y)11 = ll Vo(x,y)11

Lemma 22. If u ^ 0, then ll vo(x,y)11 = llvo(x,y)11 and k u = vo(x y) — vi(x y) if and
only if

k = track_only_line(u,vo,vi,t),

for some t = f1.
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Using track-only-line, the algorithm track-line, which computes track angle
maneuvers vo E R 3 that satisfy line case?(s vo — vi, e) for E = +1, can be defined
as follows.

track_line(s, vo , vi , E, c)

let

k = track_only_line(tangent_line(s, E)(x y) , vo , vi , t,),

vo = (k tangent_line(s, E) (x,y) + vi(x y) ) with [z <-- vo,]  

in

if k > 0 then
	 (37)

vo

else

0

endif

The correctness and completeness of track-line follow from its definition and
Lemma 22.

Theorem 23 (Correctness and completeness of track-line). If l s(x,y) II > D and
vo(x y) ^ 0. then 

1 vo(x,y) = vo (x,y) voz = voz, and line_case?(s, vo — v i , E) holds
if and only if

vo	 track_Zine(s, vo, vi , E, c)

for some t = f1.

5.3 2D Circle Solutions For 'Lack Angle Maneuvers

The algorithm track-circle-2D, defined in this section, takes as parameters s, vo,
vi , t, t, = +1, and e = ±1. It returns a vector V E 1183 that is either the zero vector
or is equal to vt,-k(ca) for some a E [0, 27r) such that the relative velocity vector
v' = vo — v i satisfies circle_case_2D?(s, v', t, t,). The main theorems in this section
state that track-circle-2D is correct and complete for 2D circle solutions that are
track angle maneuvers.

If circle_case_2D?(s, v', t, t) holds, then the vector vo must satisfy s(x,y)+tv'(.,y) 112 =
D2 If 11 vo (x,y ) II = II vo(x,y) then algebraic manipulations can be used to show that

S (x,y) + tv ( x,y ) II 2 = Il S (x,y) II 2 + t2 ll vo(x,y ) II 2 + 2t(s(x,y) — tvi(x,y)) v'(x,y)

t2llvi(x,y)112.

Thus, if t > 0, then

(S(x,y) — tvi(x,y)) • v  (x,y)	 2t (D2 — II S(x,y) 112 — t2(llvo(x,y) 112 — Il v,(x,y) II 2 ))•	 (38)

This equation has the form u • v,x,) = j, where u = s (x,y) — tvi(x,y) and

2t (D2 — II S (x,y)11 2 — t2 (Ilvo(x,y) II 2 — II v2(x,y) II 2 )) •
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Since it will be necessary in later sections to solve similar equations of the form
u v/(, y) = j, a function is needed that explicitly solves this equation for v' when

I vo(x,y) II — II v ^'(x,y ) II'

Assuming u ^4 0 , Equation (1) yields

V(x ,y) 	 II1 ((u v.,) )u + 
(u1 ' 

`'(x,y) )u1)

_  1

^^ I 
(J u + ku1)

where k = uL • V' . Lemma 22 in Section 5.2 can be used to prove that
(X L)

k = track_only_line(u 1 (x y) vo , Vi { 
u (x y) IIZ 

u, t),

for some t = ±1.

It follows from this that for u 54 0, the function track-only-dot, defined below,
solves the equation u • (vo(x,y) — vi(x,y) ) = j for vo, when Ilvo ( x,y ) 1I = Ilvo(x>y)II

track_only_dot(u, V., vi , j, t) -

let k = track_only_line(u1 , Vo , Vi + I
u(x,y) 

II2 u, t) in	
(39)

(ku1 + vi(x,y) + 
u(x,y) 2 

u) with [z <--v,.,]

Lemma 24. If u :^4 0 and v' (x,y) ^ 0, then l vo(x,y) II = I vo(x,y) II, vOZ = vOz7 and

u . (VO' (x , y ) — vi ( x , y )) = j if and only if

Vo = tracic_only_dot(u,vo,V i) j, t),

for some t = f1.

The function track-only-dot is used to solve Equation (38) when v i ^4 0 and
t > 0. Using track-only-dot, the algorithm track-circle-2D, which computes
track angle maneuvers v' E R3 that satisfy circle_case_lD?(s, v' —Vi , t, t) for i = f1,
can be defined as follows.
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track_circle_2D(s, vo , vi, t, c, s) -

let

u = (s — tvz)(x,y),

1(D2 — II S (x,y) II 2 — t2 (II Vo (x,y ) II 2 — II V , ( x,y ) II2))

in

if u 7^ 0 then

let

vo track_only-dot(U., vo, vi, j, e)

in
	 (40)

if t (s + t (v'— vi))   >0 then

V'0

else

0

endif

else

0

endif

The correctness and completeness of track -circle-2D follow from its definition
and Lemma 24.

Theorem 25 (Correctness of track-circle-2D). If vo (x y) zA 0 and

vo = track_circ Z e_2D(s vo, vi , t, t, s),

then I vo(x,y) II = Il vo (x,Y) II, voz = voz, and circle_case2D?(s, vo — Vi, t, t) holds.

Theorem 26 (Completeness of track-circle-2D)- If Il vo(x,g)II = l vo(-Y)II, voz =
vOz7 and circle_case_2D?(s, v'o —vi, t, t) holds, then either track_spc?(s, V" vi , t) holds
or

vo	 track_circZe 2D(s, vo , v i , t, c, e)

for some s = ±1.

5.4 3D Circle Solutions For 'Lack Angle Maneuvers

Theorems 25 and 26 imply that the algorithm track-circle-2D can be used to
compute vectors vo such that circle_case2D?(s, v'o — vi , t, t) holds, where t > 0.
By the definition of the predicate circle-case-3D? in Section 4.3, this algorithm can
be used to compute vectors vo such that circle_case_3D?(s, vo — vi , O H (sz , vOz —
v2z j —t), t) holds when OH(sz i vOz — v2z, —t) > 0. This motivates the definition of
the algorithm track-circle-3D, which takes as a parameters s, v o , vi , t = f1,
and s = ±1. It returns a vector v'o C R3 that is either the zero vector or is equal
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to Vtrk(a) for some a c [0, 2T) such that the relative velocity vector v' = vo — vi
satisfies circle_case_3D?(s, v', OH (sz 7 voz — v2z 7 — t), t).

track_circle_3D(s, V O7 vi , t, s)
if vOz = v2z then

0
else

let t = OH ( sZ, VOZ — Viz, —t) in

if t > 0 then	 (41)

track_circle_2D(s, vo , vi , t, t, s)

else

0

endif

endif

The following theorems state that track-circle-3D is correct and complete for
3D circle solutions that are track angle maneuvers. These properties follow ,  from
theorems 25 and 26, and properties of the function O H presented in Section 4.6.

Theorem 27 (Correctness of track-circle-3D). If vo(x,y) zA 0 and

vo = track_circle_3D(s, v O , vi, c, c),

then l vo(X '0 11 _ ^1 vo(x,y)11, voz = vOZ , and circle_case_3D?(s, v'o — vi , OH(sZ , VOZ —

viZ , - t), t) holds.

Theorem 28 (Completeness of track-circle-3D). If jvo(x,y)11 _ i vo(x,y)11 ' voz =
voz, voz =,4 viz, and circle_case_3D?(s, vo — vi, OH (sz, vOZ — "iZ, —t), t) holds, then
either track_spc?(s, vo, vi, OH(sz, voz — viz, —t))) holds or

vo = track_circle_3D(s,v O vi t s)

for some s = ±1.

5.5 A Prevention Bands Algorithm For Track Angle Maneuvers

Using the functions defined in the previous section, the prevention bands algorithm
track-bands for the function 7/trk : 1[8 i-^ 1[83 can be defined as follows, where V is
a sequence of vectors, V1 is its length, G is a set of real numbers, and sort is a
function that takes as parameter a set of real numbers and returns the sequence of
elements in the set that is sorted by increasing order.`

4 For readability, the algorithm is written using pseudo-code including assignment and bounded
loop constructions. The PVS development provides a functional version of this code.
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track_bands(s, V., v i) -

Vp : = track_circle_3D(s, vo , vi , — 1, — 1);

Vl : = track_circle_3D(s, Vol vi , —1, 1);

V2 := track_circle_3D(s vo vi , 1, — 1);

V3 : = track_circle_3D(s, Vol vi , 1 1 1);

if Ilse y)	 > D then

V4 . = track_circle2D(s, Vol vi , T, —1, —1);

V5 .= track_circle2D(S, Vo l vi , T, — 1, 1);

V6 .= track_line(s, Vo, vi , —1, — 1);

V7 := track_line(s, Vo, vi , —1,1);
(42)

Vg := track_line(s, Vo l Vi , 1,- 1);

Vj . = track_line(s, Vo l vi , 1, 1);

endif

G = 10, 27r};
for i. =I to	 VI do

if Vi(x y) :7^ 0 then

,C := L U {track(Vi)};

endif

endfor

LUtrk	 SOrt(L);

The finite, ordered sequence L,trk returned by track bands is computed using
every possible instantiation of the parameters e and t, both of which can be ±1, in
the functions track line, track-circle-2D, and track-circle-3D. For each vector
vo returned by one of these three algorithms for s, v o , and vi with the property
that von,, ,y^ 0 0, the track angle of vo is an element of the sequence returned by
track bands.

Theorem 29 (Correctness of track bands). The track angle prevention bands al-
gorithm track bands is correct for vtrk over the interval [0, 2,r].

Proof. By Theorem 2 in Section 2.5, it suffices to find a continuous function Q,: R H
R, parameterized by s, Vol and vi , that satisfies the following two properties.

1. For all a E [0, 2;r],

Q, (a) < 1 <--^ COnflict2(S,7A,k(a) — Vi)•

2. For all a E [0, 27r],

Q1, (a) = 1 ==;^ a E track-bands (s, Vol vi).

27



In most cases, the function Q,, where v = vtrk, defined in Equation (15) of Sec-
tion 3, will suffice. However, in some special cases, the function Qtr k, defined in
Equation (31) of Section 5.1, will be used. The latter case is considered first.

Suppose that track_spc?(s, vo , v i , t), where t > 0, and that one of the following
conditions holds.

1. IIs (x,y) II > D, Voz 54 Viz, t = OH( sz> Voz — Viz, L), and 0 < t < T.

2. II s( ,x ,y) II > D, Voz zA viz, c = 1 , t = OH(sz, Voz — Viz j 1), and t = T.

3. t= 1, t = T, and I sz + T (vOz — v2z) 
I 
<H.

By Theorem 19 in 

(

Section 5.1,

Qtrk(vo,Vi, t, O(a) < 1 ^^ conflict?(s, vtrk(a) — Vi)

holds for any a E R. Thus, all that is required to complete the proof in this special
case is to prove that for all a E [0, 27r], Qtrk(CO = 1 implies

a E track_bands(s, vo, Vi).

If S2trk (a) = 1 then Theorem 18 implies that line case ?(s vtrk(a) — vi , e), for some
= f1. By the completeness of the algorithm track-line (Theorem 23 in Sec-

tion 5.2), if I s (.,y) II > D, then vtrk(a) is equal to track_line(s, vo , vi , C, t), for some
c = ±1. Thus, a = track (vtrk(a)) is equal to track(track_line(s, vo , vi , C, c)),
which, by definition, is an element of track_bands(s, v o , vi ). If II s (x,y) II < D, then it
must be true that the third condition holds: c = 1, t = T, and I sz +T (vOz — viz)I <
H. In this case, it is easy to prove that for any a E 118, conflict?(s, vtrk(a) — vi), and
therefore S2trk (a) < 1. This completes the proof in the case where one of the three
conditions above holds.

Now suppose that the second condition above holds, but where c = 1 is replaced
with c = —1. That is, suppose that I s (x,y) I I > D, vOz :^ v iz, t = OH (sz j voz —
Viz, —1), t = T, and track_spc?(s,vo, v i , T). Since vt.rk( Ce )z = vOz for any a E 118,
Lemma 12 of Section 4.6 can be used to show that conflict?(s, vtrk( a ) — vi ) does not
hold for any a E R. In this case, the correctness of the algorithm track-bands is
trivial.

The proof has now been reduced to the case where neither of the following
conditions hold.

1. vOz 54 viz and there exists c = ±1 such that track_spc?(s, vo , v i , t) and 0 < t <
T, where t = OH (sz , Voz — Viz , c).	 —

2. track_spc?(s, vo, v i , T) and Isz +T (vOz — V2z)I < H.

By Corollary 7 of Section 3.3, the function Q,, where v = vtrk, characterizes
conflict. Suppose that a E [0, 27r] and Q,(a) = 1. Since Q,(a) = Q ( vtrk(a) — vi),
Theorem 9 in Section 4.5 implies that one of the following conditions holds, where

v = vtrk(a) - vi.

• II s(x,y) II > D and either line_case?(s, v, C), for some C	 1.

28



• Isz + Tv, I < H and circle_case_2D?(s, v, T, —1).

• There is some real number t > 0 such that circle_case_3D?(s, v, t, t), for some
c=±1.

• II S(x,y) + Tv(x,y)II < D and vertical case?(sz7vz7T,-1).

These cases are now considered individually.

• Suppose first that II s (x,y) II > D and line case?(s, vtrk(a) — vi , s), for some
= f1. By completeness of track line (Theorem 23), vtrk(a) is equal to

track_line(s, vo , vi , e, t), for some c = ±1. Thus, a = track (r/trk(a)) is
equal to track(track_line(s, vo , vi , E, t)), which, by definition, is an element
of track_bands(s, vo, vi).

• Suppose that Isz + Tvzl < H and circle_case_2D?(s, vtrk(a) — vi , T, —1). By
completeness of the algorithm track-circle-2D (Theorem 26), vtrlc(a) is equal
to track_circle2D(s, vo , vi) t, e, S), for some t = ± l and F = f1. Thus,
a = track ( vtrk(a)) = track(track_circle2D(s, vo, vi, t, t, s)). Hence, a is
an element of track_bands(s, vo , vi).

• Suppose that there is a real number t > 0 such that circle_case_3D?(s, v, t, t),
where c = ±1. Assume that vOz zA viz . By completeness of track-circle-3D
(Theorem 28), vtrk( ce ) = track_circle_3D(s, vo, vi , t, e) for some t = fl and
E = ± 1. Thus, as above,

a = track(vtrk(a)) = track(track_circle_3D(s, v o , vi , t, e)).

Hence, a is an element of track_bands(s, vo, vi ). The case where v Oz = viz
can be equally discharged.

• Finally, suppose that IIs (x ,y) + Tv(x,y) II < D and vertical case?(sz j vz, T, —1).
In this case, the fact that vtrk(a)z = vOz implies that conflict?(s, vtrk(a) — vi)
does not hold for any a c R. From there, the correctness of the algorithm
track bands is trivial.

6 Ground Speed Prevention Bands

This section presents a formally verified algorithm, namely gs_bands, for ground
speed prevention bands over an arbitrary interval [gsrain, gsmaxj for the function
vg,: 118 i--* 1183 , defined by Equation (4) in Section 2.2. The boundaries of the interval,
gsm.i.n and gsrn.a.x, represent (postitive) minimum and maximum ground speeds
for the ownship aircraft, respectively. Given vectors s, v o , and vi , this algorithm
computes ground speed maneuvers, i.e., vectors vo that satisfy vo (x y) = E vo(x y),
for some f > 0, and voz = vOz.

The definition of gs_bands depends on the algorithms gs_line, gs_circle2D,
and gs_circle_3D, which compute ground speed maneuvers that are line solutions,
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2D circle solutions, and 3D circle solutions, respectively. These three algorithms are
proved to be complete and correct for ground speed maneuvers that satisfy their
respective predicate. The correctness of gs_bands depends on the completeness of
gs_line, gs_circle_3D, and gs_circle2D.

If v'' is a ground speed maneuver for the ownship, then there is some positive
p E 118 such that vgs(p) = v'o . Therefore, vo (xy) = Evo (xy) , where = 

IIv^P,y)ll 
and

f>0.

6.1 Line Solutions For Ground Speed Maneuvers

The algorithm gs_line, defined in this section, takes as parameters s, vo, v i , t, and
c = fl. It returns a vector V E 1183 that is either the zero vector or is equal to
vgs (p) for some p E 118 such that the relative velocity vector v' = v' — v i is tangent
to the circle, i.e., it satisfies line case?(s, v', c). The main theorem in this section
states that gs_line is correct and complete for line solutions that are ground speed
maneuvers.

Suppose s(x y ) > D and that v' is a vector in R3 such that v'o(x,y) _ f vO ( x y).

Suppose further that hne_case?(s, vo—v i ^) holds for some = f1. By Lemma 21 of
Section 5.2, there is some k > 0 such that Pvo(x,y) = k tangent_line(s, E) + vi(x,y)
This equation has the form

fVO(x,y) = k u + vi (x,y )^	 (43)

where u E 1183 . Functions can be defined that explicitly solve this equation for k and
^. It is easily proved that

(Vi(x,y) UI) VO (x ,y) — (Vo (x ,y ) ' UI) vi (x ,y ) — (Vi (x ,y ) , Vo (x,y )) U.

Thus, if vo(x,y) • u1 ^ 0, then

k = yi (x ,y) ' VO (x,y)	 (44)
VO ( x,y) U1

Vi(x,y) U1P =	 ^ .	 (45)
V O (x,y) u

This motivates the definition of the algorithms gs_line-k and gs_line_l, which
solve Equation (43) for k and 1.

gs_line_k(u, vo , vi) -

if Vo(x,y) ' u1 4 0 then

yi (x,y) V 

1

O (x,y)

(

	

vO ( x ,y ) ' u1 	 46)

else

0

endif
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gs_1ine_1(u, vo, vi)

if va(x•y ) • uL ^4 0 then

max vi (x ,y) ' u
1 

0

VO ( x ,y) ' 
uL 	(47)

else

0

endif

Lemma 30. If f > 0 and either vi(x y) • vo 
(x 

y) ^ 0 or vo(x y) • uL ^ 0, then Equa-

tion (43) holds if and only if k = gs_line_k(u, vo, vi) and Q = gs_line_l(u, vo, vi).

Using gs_line-k and gs_line_l, the algorithm gs_line, which computes ground
speed maneuvers vo E R3 that satisfy line_case?(s, vo — vi , e) for e = ^1, can be
defined as follows.

gs_line(s, vO . vi,, s)

let

u = tangent_1ine(s,6)(x•y)

k = gs_line-k(u, vo, vi)

e = gs_1ine_1(u, vo, vi)

in

if k > 0 then	
(48)

f vo(x y ) with [z <-- VOZI

else

0

endif

endif

The correctness and completeness of gs_line follow from its definition and
Lemma 30.

Theorem 31 (Correctness and completeness of gs_line). If Il s(x y) 11 > D, vo(x,y) =14

0, and either v i(x y) • vo 
(x y) 

:^ 0 or vo(x y) • tangent_line(s, 5) L (x y) 0 0, then
voz =voz vo(x y ) = Pvo(x y) for some e > 0, and line_case?(s, vo — vi E) holds if
and only if

vo = gs_ l ine(s, vo , vi , e).

This theorem does not hold if s(x y ) > Dvi(x,y) vo ( x,y ) = 0, and vo(x,y)

tangent -line (s, E) L (x y ) = 0. This case has to be handled separately in the verifi-
cation of correctness of the ground speed prevention bands algorithm.
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6.2 2D Circle Solutions For Ground Speed Maneuvers

The algorithm gs_circle_2D, defined in this section, takes as parameters s, vo , vi,
t, c = ±1, and c = fl. It returns a vector v' c R3 such that v' is either the zero
vector or is equal to vgs (p) for some p > 0 such that the relative velocity vector
V = vo — vi satisfies circle_case_2D?(s, v' — vi, t, c). The main theorems in this
section state that gs_circle_2D is correct and complete for 2D circle solution that
are ground speed maneuvers.

If circle_case_2D?(s, vo — vi , t, c) holds, then the vector vo must satisfy

S (x,y) + t (V0 (x ,y ) — V,(x,y)) 
112 

= D2'

If vo (x,y) _ f vo(x,y) , then simple algebraic manipulation can be used to show that
a. f2 + b f + c. = 0, where

a = t2 VO(x,y) II2,
b = 2t (s — t vi)(x,y) - VO(x,y)^

(S - tvi ) (x,y )11 2 — D2.

This is a quadratic equation in f, which can be solved using the quadratic for-
mula. Note that if v' represents a ground speed maneuver for the ownship, then

must be positive, since v'o(x,y) = Pvo(x,y) . This motivates the following definition
of the algorithm gs_circle_2D, which computes ground speed maneuvers v' c R3
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that satisfy circle_case_2D?(s, v'' — vi, t, t) for t = f1.

gs_circle2D(s, V" Vi , t, t, s)
let

a = t2 Il vo(x,y) 112
b = 2t (S — t vi )(x,y) ' v°(x,y)

= I I (S — tV2 ) (x,y)11 2 — D2
in

if b2 — 4a.c > 0 then

let

Q=
b2 + s Vb2 —4 a c.

2a	
(49)

vo = max(e, 0) vo(x,y) with [z <-- vOZ]

in

if t (s + t (vo — vi))(x,y) (vo — vi )(x y) > 0 then

v'0

else

0

endif

else

0

endif

The correctness and completeness of gs_circle2D follow from its definition and
the correctness and completeness of the quadratic formula, which has been proved
in PVS.

Theorem 32 (Correctness of gs_circle2D). If vo(x,y ) zA 0 and

vo = gs_circ Ze_2D(s, V" vi, t, t, e),

thenCirCle_case_lD?(s, v'' — v i , t, t) holds, v'OZ = vo,z j and vo (x y) = Q vo(x y) for some
t > 0.

Theorem 33 (Completeness of gs_circle2D). If vl(x,y) = Pvo (x,y) , ^ > 07 voz —
vOz 7 and circle_case2D?(s, v'' — vi , t, t) holds, then

vo = 9s_circZe_2D(s, V., vi, t, t, E),

for some s = ±1.

6.3 3D Circle Solutions For Ground Speed Maneuvers

Theorems 32 and 33 imply that the algorithm gs_circle2D can be used to coin-
pute vectors v' such that circle_case2D?(s, v' — vi , t, t) holds, where t > 0. By the
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definition of the predicate circle-case-3D? in Section 4.3, this algorithm can be used
to compute vectors vo such that circle_case_3D?(s, vo — vi Ox(sz VOz — V2z —^) c)
holds when Ox(s,z j vOZ — v i,, — c) > 0. This motivates the definition of the al-
gorithm gs_circle_3D, which takes as a parameters s, vo , vi , c, and E. It re-
turns a vector vo E R 3 such that the relative velocity vector v' = vo
circle_case_3D?( s, Vr , E)H( Sz, Voz — Viz, —^), L)	

— vi satisfies

gs_circle_3D(s, Vo , vi , c, s)

if V OZ = V2z then

0

else

let

t = 19x (sz j VOZ — V2z j —G)

in
	

(50)

if t > 0 then

gs_circle2D(s, vo, vi, t, t, s)

else

0

endif

endif

The following theorems state that gs_circle_3D is correct and complete for 3D
circle solutions that are ground speed maneuvers. These properties follow from
theorems 32 and 33, and properties of the function Ox presented in Section 4.6.

Theorem 34 (Correctness of gs_circle_3D). If vo (x,y) =,k 0 and

vo = gs_c irc b e_3D(s, Vo , vi , c, s),

then C2TCle_cCLSe_3D?(S v' —vi, Ox(sz VOZ —V2z, — L), 0 holds, v' = v OZ , and v'' y)
f vox y) for some Q > 0.

Theorem 35 (Completeness of gs_circle_3D). If vo (x,y) = PVO(x,y) , e > 0, vOz =
Vozv voz viz, and circle_case_3D ?(s vo — vi, 0H (s, VoZ — Viz, —0, t) holds, then

vo = gs_c irc b e_3D(s, V" vi, c, s),

for some s = ±1.

6.4 A Prevention Bands Algorithm For Ground Speed Maneuvers

The prevention bands algorithm gs_bands for the function vg,: R F-^ R3 that com-
putes a sorted sequence L„gs is defined in a similar way to algorithm track-bands
in Section 5.5.
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gs bands(s, vo, vi)

Vp . = gs_circ1e_3D(s, vo, v i , —1, — 1);

Vl : = gs_circ1e_3D(s, vo vi, —1, 1);

V2 . = gs_circ1e_3D(s, vo vi , 1, — 1);

V3 . = gs_circle_3D(s, vo Vi , 1, 1);

if I s(x,y) II > D then

V4 . = gs_circle2D(s, vo , vi, T, —1, —1);

V5 . = gs_circle2D(s, vo , vi, T, —1, 1);

V6 := gs_line(s, Vol Vi , — 1);
(51)

V7 . = gs_line(s, vo , vi, — 1);

endif

G = {gsmin, gsmax};

for i. = 1 to VI do

if Vi(x y) :7^ 0 and gsmin < II Vi (x,y) II < gsmax then

.c := L u{ I I V (x,y)11 };

endif

endf or

Lugs := sort(r);

Theorem 36 (Correctness of gs_bands). The ground speed prevention bands algo-
rithm gs_bands is correct for v g, over the interval [gsmin, gsmax].

Proof. The first step in the proof is to consider the special case where s(x,y) > D,
vi(x y ) vo (x y ) = 0, and vo(x y ) tangent_line(s s) 1 (x,y) = 0. This case is handled
separately because it is explicity excluded from the hypotheses of Theorem 31. In
this case, it can be proved that the vectors tangent -line (s,e)(x,y), vo(x,y) , and
vi(x,y) are all co-linear.

To prove correctness of the algorithm for the special case, it suffices to show that
if p E [gsmin, gsmax], then conflict?(s, vgs (p) — vi ) does not hold. Since vgs (p) is a
ground speed maneuver of vo, both vectors point in the same direction. Therefore,
7/gs(p) (x y) — vi(x,y) is also co-linear with tangent_line(s, 6) (x,y) . The trajectory from
s(x ,y) along vgs(p)(x,y) — vi(x,y) is therefore tangent to the circle of radius D around
the origin and is never in horizontal conflict.

In the general case, suppose that it is not true that s (x,y)	 D , vi(x,y) - vo (x,y)
0, and vo(x ,y) • tangent_line(s, C) 1 (x •y) = 0. In this case, by Theorem 2 in Sec-
tion 2.5, it suffices to prove that the function Q,, where v = vg, satisfies the
following two properties.

1. For all ground speeds p c [gsmin, gsmax],

Q,(p) < 1 <--^ conflict?(s, vgs (p) — vi).
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2. For all ground speeds p c [gsmin, gsmax],

Q, (p) = 1 ===> p E gs_bands(s,vo,vi).

The first of these properties follows immediately from Corollary 7 in Section 3.3. All
that is left to verify is the second property, the proof of which is identical in form
and substance to the general case of the proof of Theorem 29 in Section 5.5. 	 q

7 Vertical Speed Prevention Bands

This section presents a formally verified algorithm, namely vs -bands, for vertical
speed prevention bands over an arbitrary interval [vsmin, vsmax] for the function
vvs : R --> R3 , defined by Equation (5) in Section 2.2. The boundaries of the inter-
val, vsmin and vsmax, represent minimum and maximum vertical speeds for the
ownship aircraft, respectively. Given vectors s, v o , and vi,, this algorithm computes
vertical speed maneuvers, i.e., vectors v' that satisfy vo(x,y) = vox y).

The definition of vs bands depends on the algorithm vs -circle, which computes
vertical speed maneuvers that are 3D circle solutions and vertical solutions. This
algorithm is proved to be complete for vertical speed maneuvers. The correctness
of vs-bands depends on the completeness of vs-circle.

By the definition of circle-case-3D? in Equation (21), circle_case_3D?(s, v, t, e)
implies vertical_case?(sz, vz, t, —c) and circle_case_JD?(s, v, t, c) for any t c R and
c = +1. Thus, an algorithm for computing 3D circle solutions for vertical speed ma-
neuvers will also compute vertical solutions and 2D circle solutions. If vertical case?(sz, vz7 t, —t)
holds, then I sz + t vz I = H, and therefore there is some s = f 1 such that sz + t vz =
H. The function vs-at, defined below, takes as parameters sz, a nonzero real

number t, and o = f 1. It returns the real number vz such that sz + tvz = CH.

vs -at (sz j t,$) -	
t

H — Sz	
(52)

Leinina 37. If vz is a real number, then sz + tvz = e H if and only if

v,z = vs_at(S" t, c).

The next lemma states that the function vs -at can be used to compute vertical
solutions. The proof follows from Equation (19) and Lemma 37.

Lemma 38. If t > 0 and vertical-case ?(sz, v z , t, —1) holds, then

vz = vs_at(sz j t, sign(sz))

7.1 3D Circle and Vertical Solutions For Vertical Speed Maneuvers

The algorithm vs-circle, defined in this section, takes as parameters s, v o , vi,
t, and s = ±1. It returns a vector vo that is either the zero vector or is equal
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to V" (r) for some r E R such that the relative vector v = vo — v i satisfies
circle_case_3D?(s, v, t, t). The main theorems in this section state that vs-circle
computes all 3D circle solutions and all vertical solutions that are vertical speed
maneuvers.

Suppose that 0(s, vo — vi ) > 0 and circle_case_3D?(s, vo — v i , t c) holds, where

vo(x,y) = vo(x,y) and v0',, = r. It is easy to prove that 0(s, vo — vi, ) > 0 implies
vo x y) vi(x,y) . Since o(s, vo — vi ) = o(s, vo — vi ), Corollary 14 in Section 4.6
implies that t = OD (s, vo—Vi, t). Since vertical case?(sz 7 (7, —v2z), t, —t) holds, there
is some E = ±1 such that

Sz + OD (s, vo — vi, t) (r — V2z) = E H.	 (53)

Since OD (S, vo — vi , t) > 0, the following equivalence holds.

r = Viz 4=z? H=esz.

Suppose that H E sz . Multiplying both sides of Equation (53) by E and applying
the fact that E2 = 1 yields

E sz + OD (s, vo— Vi, t ) E (r—Viz) =H.

Since OD ( S , vo — vi , t) > 0, it follows that

— sign(E (r — v2z )) = sign(E sz — H).	 (54)

Since vertical case?(sz, (r — v2z), OD (s, vo — vi , t), —t) holds,

— t (Sz + OD (s, vo — vi, L) (r — v2z)) (r — v 2z ) > 0.

It therefore follows from Equation (53) that —t E H (r — v2z ) > 0. Since H > 0 and
r =,4 v2z, basic arithmetic manipulations can be used to deduce that

— sign(E (r — v2z )) = t.	 (55)

Putting equations (54) and (55) together, the following equality holds.

sign(E sz — H) = t	 (56)

This equation is used to select the appropriate choice of t in the algorithm vs-circle,
defined below in Equation (52), even in the case where E sz = H. It follows from
Lemma 37 that

r = viz + vs_at(sz j OD (s, vo — vi , t), E).	 (57)

This equation also appears in the definition of vs-circle, which is given below. It
returns a vector vo E 1[8 3 such that either vo^x. ,y^ = vo ^ x,y ^ or vo	 0.
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vs_circle(s, V" vi , t, s) -

if 0 (s, vo — vi ) < 0 then

if e s,z > H and t > 0 then

V,(x.y) with [z <-- Viz + vs_at(S" t, 5)I

else

0

endif

else

let

0 -1	 E) D(S , Vo — Vi, —1),

0+1 = E)D (S, Vo — Vi, 1 ),	 (58)

"Tmin = min(t, E)D(s, V, — Vi, 1))
in

if es, < H and Il s (x y) II > D then
V, (x.y ) with [z <-- viz + vs_at(Sz j O -1, s)]

elsif es ,z > H and -F.2n, > 0 then

Vo(xzy ) with 1z — V2z + vs_at(sz ) 77nin, eA
else

0

endif

endif

The completeness of vs-circle for 3D circle and vertical solutions follows from
its definition, Lemma 38, and properties of the function O D presented in Section 4.6.

Theorem 39 (Completeness of vs -circle for 3D Circle Solutions). If vo(x,y) _
vo(x y ) 0(s, vo — vi ) > 0, c = f1, t > 0, circle_case_3D?(s, v' — vi , t', t), for some
t' C 118, and either i = —1 or OD (s, Vo — vi , 1) < t, then

vo = vs_circ l e(s, vo, vi, t, E),

for some s = ±1.

Theorem 40 (Completeness of vs -circle for Vertical Solutions). If vo (x,y) =
vo (x,y) , vertical case?(s ,z, v'OZ — v i;,, t, —1), and either 0(s, vo — v i) < 0 or t <
OD (S, vo — vi , 1), then

vo = vs_circ l e(s, v o , vi , t, e)

for some s = ±1.

38



7.2 A Prevention Bands Algorithm For Vertical Speed Maneuvers

The prevention bands algorithm vs -bands for the function vvs : R F-> R3 that com-
putes a sorted sequence Lvvs is defined in a similar way to the previous algorithms
track-bands in Section 5.5 and gs_bands in Section 6.4.

vs_bands(s, vO , vi)

VO : = vs_circle(s, vo, vi , T, —1);

T71 . = vs_circle(s, vo, vi , T,1);

,C = {vsmin, vsmax};

for i = 1 to IVI do	 (59)

if tiz(xy) ^ 0 and vsmin < T jZ < vsmax then

C := ,C U { Viz },

endif

endf or

LVVS .= sort(C);

Theorem 41 (Correctness of vs bands). The vertical speed prevention bands algo-
rithm vs- bands is correct for vti,s over the interval [vsmin, vsmax].

Proof. By Theorem 2 in Section 2.5, it suffices to prove that the function Q,, where
v = 7/vs, satisfies the following two properties.

1. For all vertical speeds r c [vsmin, vsmax],

Q, (r) < 1	 conflict?(s, vvs (r) — vi).

2. For all vertical speeds r E [vsmin, vsmax],

Q, (r) = 1 ====> r C vs bands(s, T, vo, v.i,).

The first of these properties follows immediately from Corollary 7 in Section 3.3. To
prove the second property, suppose that r C [vsmin, vsm.ax] and Q, (r) = 1, where
v = vvs. Since Q, (r) = Q(s, vvs (r)—vi ), Theorem 9 implies that one of the following
conditions holds, where v = vvs(r) — vi.

• II s(x,y) II > D and either line_case?(s, v, —1) or line_case?(s, v, 1).

• I sz + Tv, I < H and circle_case_lD?(s, v, T, —1).

• There is some real number t > 0 such that either circle_case_3D?(s, v, t, b), for
some L = ±1.

• II s(x,y) + Tv(x,y) II < D and vertical_case?(sz j vz, T, —1).

In either of the first two cases, it can easily be shown that conflict?(s, vvs(x) — vi)
does not hold for any x C R. In this case, by Definition 2 in Section 2.4, it follows
that the prevention bands algorithm vs-bands is correct for v vs over [vsmin, vsma.x].
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The latter two cases are considered individually. For the rest of the proof, it is
assumed that A(s, vo — vi) > 0. The proof in the case where 0(s, vo — vi) < 0 is
left to the reader. Since A(s, vo — vi) > 0, it is easy to prove that Vo(x,y) 4 Vi(x,y)-

Suppose that there is some real number t > 0 such that circle_case_3D?(s, v, t, 1'),
where c = ±1. By the definition of circle-case-3D? (Equation (21) in Section 4.3)
and Corollary 14 in Section 4.6, it follows that t = OP (s, Vo — Vi , a). By Theorem 39
in Section 7.1 (completenes of vs-circle for 3D circle solutions), if either c = —1
or OD (S, Vo — Vi, 6) _< T, then vvs(r) is equal to vs_circle (s, Vo, Vi, T, E), for some

= fl. Thus, r c vs_bands(s, T, vo , vi.). Alternatively, if c = 1 and O D (s, vo —
vi , l) > T, it can be proved from the definition of the function Q, that Q,(r) > 1,
a contradiction.

Finally, suppose that s(x,y) + Tv (x y) < D and mrtical_case?(s, J vz7 T, —1).
The proof in this case is similar to the case above. By Theorem 40 in Section 7.1
(completeness of vs-circle for vertical solutions), if T < 9D ( s , Vo — vi , 1), then
vvs (r) is equal to vs_circle(s, vo , vi , T, s), for some s = f1. Thus, it holds that
r E vs_bands(s, T, vo , vi). Alternatively, if T > OD(s, Vo — Vi, 1), it can be proved
that Q,(r) > 1, a contradiction. 	 q

8 Conclusion

In [3], Maddalon et al. present, without verification, 3D algorithms for track angle,
ground speed, and vertical speed prevention bands. Formal verification of horizontal
versions of these algorithms was presented in [2]. This paper provides correct ver-
sions of the algorithms presented in [3], namely track-bands (Section 5.5), gs_bands
(Section 6.4), and vs-bands (Section 7.2). The correctness of these algorithms has
been formally verified using the PVS theorem prover.

Although this paper focuses on track angle, ground speed, and vertical speed
prevention bands, the techniques presented here applied to arbitrary conflict pre-
vention bands algorithms that are based on state information. More precisely, given
a function v: R --^ R 3 and an interval I c R, Section 2.5 describes a, general strategy
that can be followed to prove that a given prevention bands algorithm is correct.
In fact, Section 3 develops the theory of a universal function Q that can be used as
a tool in the verification of prevention bands algorithms for many different choices
of v.
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